1. 投影变换
定义:
向量空间
C
n
C^{n}
Cn 中, 子空间
L
L
L 与
M
M
M 满足
C
n
=
L
⊕
M
C^{n}=L \oplus M
Cn=L⊕M, 对
∀
x
∈
C
n
\forall x \in C^{n}
∀x∈Cn, 分解式
x
=
y
+
z
,
y
∈
L
,
z
∈
M
x=y+z, y \in L, z \in M
x=y+z,y∈L,z∈M 称变换
T
L
,
M
(
x
)
=
y
T_{L, M}(x)=y
TL,M(x)=y 到
L
L
L 的投影
性质:
性质
(
1
)
:
T
L
,
M
(1): T_{L, M}
(1):TL,M 是线性变换
性质(2):
R
(
T
L
,
M
)
=
L
,
N
(
T
L
,
M
)
=
M
R\left(T_{L, M}\right)=L, N\left(T_{L, M}\right)=M
R(TL,M)=L,N(TL,M)=M
性质(3):
∀
x
∈
L
⇒
T
L
,
M
(
x
)
=
x
∀
x
∈
M
⇒
T
L
,
M
(
x
)
=
0
\forall x \in L \Rightarrow T_{L, M}(x)=x \quad \forall x \in M \Rightarrow T_{L, M}(x)=0
∀x∈L⇒TL,M(x)=x∀x∈M⇒TL,M(x)=0
投影矩阵:
T
L
,
M
(
x
)
=
y
⇔
P
L
,
M
x
=
y
T_{L, M}(x)=y \Leftrightarrow P_{L, M} x=y
TL,M(x)=y⇔PL,Mx=y
x
∈
L
⇒
T
L
,
M
(
x
)
=
x
⇒
P
L
,
M
x
=
x
x \in L \Rightarrow T_{L, M}(x)=x \Rightarrow P_{L, M} x=x
x∈L⇒TL,M(x)=x⇒PL,Mx=x
x
∈
M
⇒
T
L
,
M
(
x
)
=
0
⇒
P
L
,
M
x
=
0
x \in M \Rightarrow T_{L, M}(x)=0 \Rightarrow P_{L, M} x=0
x∈M⇒TL,M(x)=0⇒PL,Mx=0
1.1 投影变换相关定理
已知:
R
(
A
)
=
{
y
∣
y
=
A
x
,
x
∈
C
n
}
,
N
(
A
)
=
{
x
∣
A
x
=
0
,
x
∈
C
n
}
R(A)=\left\{y \mid y=A x, x \in C^{n}\right\}, N(A)=\left\{x \mid A x=0, x \in C^{n}\right\}
R(A)={y∣y=Ax,x∈Cn},N(A)={x∣Ax=0,x∈Cn}
引理1:
A
n
×
n
,
A
2
=
A
⇒
N
(
A
)
=
R
(
I
−
A
)
A_{n \times n}, A^{2}=A \Rightarrow N(A)=R(I-A)
An×n,A2=A⇒N(A)=R(I−A)
定理1:
P
n
×
n
=
P
L
,
M
⇔
P
2
=
P
P_{n \times n}=P_{L, M} \Leftrightarrow P^{2}=P
Pn×n=PL,M⇔P2=P
1.2 已知两个空间,如何得到对应的投影矩阵
先设: 原文:https://blog.csdn.net/a_beatiful_knife/article/details/122102472
dim
L
=
r
,
L
\operatorname{dim} L=r, L
dimL=r,L 的基为
x
1
,
⋯
,
x
r
:
X
=
(
x
1
,
⋯
,
x
r
)
x_{1}, \cdots, x_{r}: X=\left(x_{1}, \cdots, x_{r}\right)
x1,⋯,xr:X=(x1,⋯,xr)
dim
M
=
n
−
r
,
M
\operatorname{dim} M=n-r, M
dimM=n−r,M 的基为
y
1
,
⋯
,
y
n
−
r
:
Y
=
(
y
1
,
⋯
,
y
n
−
r
)
y_{1}, \cdots, y_{n-r}: Y=\left(y_{1}, \cdots, y_{n-r}\right)
y1,⋯,yn−r:Y=(y1,⋯,yn−r)
所以:
P
L
,
M
x
i
=
x
i
⇒
P
L
,
M
X
=
X
P_{L, M} x_{i}=x_{i} \Rightarrow P_{L, M} X=X
PL,Mxi=xi⇒PL,MX=X
P
L
,
M
y
j
=
θ
⇒
P
L
,
M
Y
=
O
P_{L, M} y_{j}=\theta \Rightarrow P_{L, M} Y=O
PL,Myj